):CXV TPC Global

warw |peglebal in Jm fm ﬂ‘tﬂfmwﬂﬂf {:’Wﬂ,{lﬂﬂlﬂ

Problem- LeetCode #899: Orderly Queue

You are given a string s and an integer k. You can choose one of the first k letters of s and append it
at the end of the string.

Return the lexicographically smallest string you could have after applying the mentioned step any
number of moves.

Example 1:

Input: s = "cba", k =1

Output: "acb"

Explanation:

In the first move, we move the 1st character 'c' to the end, obtaining the string "bac".

In the second move, we move the 1st character 'b' to the end, obtaining the final result "acb".

Example 2:

Input: s = "baaca", k=3

Output: "aaabc"

Explanation:

In the first move, we move the 1st character 'b' to the end, obtaining the string "aacab".

In the second move, we move the 3rd character 'c' to the end, obtaining the final result "aaabc".

Code-

class Solution {
public:
string orderlyQueue (string s, int k) {

if (k == 1) {
queue<char> qg;

for (int i = 0; 1 < s.size(); i++) {

g.push(s[i]);

H.O- 205, LGF, Greater Kailash 1l, New Delhi — 110048, INDIA, e. info@tpcglobal.in , web: www.tpcglobalin
B.O: 5 R Tower, Shiva Enclave, GMS Road, Ballupur Chauk, Dehradun- 248 001, Uttarakhand, INDIA

Z%Z/ TPCTMCHI ybal

e tining for Profiessional (ompetonce

string smallest = s;

for (int step = 0; step < s.length(); step++) {
char first = g.front();

qa.pop ()
g.push (first);

queue<char> copy= g;
string current="";
while (!copy.empty ()) {
current+=copy.front () ;

copy.pop () ;

if (current<smallest) {

smallest=current;

}

return smallest;

telse(
sort (s.begin(),s.end());

return s;

H.O- 205, LGF, Greater Kailash 1l, New Delhi — 110048, INDIA, e. info@tpcglobal.in , web: www.tpcglobalin
B.O: 5 R Tower, Shiva Enclave, GMS Road, Ballupur Chauk, Dehradun- 248 001, Uttarakhand, INDIA

I TPC'Globa

wiw ipcgiobal in Jmm fm ﬂtﬂfﬂ&ﬂﬁ‘ﬂﬂl’ {fampmwm

Problem- LeetCode #134: Gas Station

There are n gas stations along a circular route, where the amount of gas at the it station is gasi].

You have a car with an unlimited gas tank and it costs cost[i] of gas to travel from the it station to its
next (i + 1)t station. You begin the journey with an empty tank at one of the gas stations.

Given two integer arrays gas and cost, return the starting gas station's index if you can travel around
the circuit once in the clockwise direction, otherwise return -1. If there exists a solution, it is
guaranteed to be unique.

Example 1:

Input: gas =[1,2,3,4,5], cost = [3,4,5,1,2]

Output: 3

Explanation:

Start at station 3 (index 3) and fill up with 4 unit of gas. Yourtank =0 +4 =4
Travel to station 4. Yourtank =4-1+5=8

Travel to station 0. Yourtank =8-2+1=7

Travel to station 1. Yourtank =7-3+2=6

Travel to station 2. Yourtank =6-4+3 =5

Travel to station 3. The cost is 5. Your gas is just enough to travel back to station 3.
Therefore, return 3 as the starting index.

Example 2:

Input: gas = [2,3,4], cost = [3,4,3]

Output: -1

Explanation:

You can't start at station 0 or 1, as there is not enough gas to travel to the next station.
Let's start at station 2 and fill up with 4 unit of gas. Yourtank=0+4 =4

Travel to station 0. Yourtank =4-3+2=3

Travel to station 1. Yourtank =3-3+3=3

You cannot travel back to station 2, as it requires 4 unit of gas but you only have 3.
Therefore, you can't travel around the circuit once no matter where you start.

H.O- 205, LGF, Greater Kailash 1l, New Delhi — 110048, INDIA, e. info@tpcglobal.in , web: www.tpcglobalin
B.O: 5 R Tower, Shiva Enclave, GMS Road, Ballupur Chauk, Dehradun- 248 001, Uttarakhand, INDIA

TH

o ™

Z/_ TPC CIh;In[
e tining for Profiessional (ompetonce
Code-

class Solution {
public:

int canCompleteCircuit (vector<int>& gas, vector<int>& cost) {

int total = 0;
int current = 0;

int start = 0;

for (int 1 = 0;1 < gas.size(); i++) {
int difference = gas[i] - cost[i];
total += difference;

current += difference;

if (current < 0) {
start = i + 1;
0;

current

}
if (total<0) return-1;

return start;

H.O- 205, LGF, Greater Kailash 1l, New Delhi — 110048, INDIA, e. info@tpcglobal.in , web: www.tpcglobalin
B.O: 5 R Tower, Shiva Enclave, GMS Road, Ballupur Chauk, Dehradun- 248 001, Uttarakhand, INDIA

Z%Zb TPCTM(--IMJIH[

warw Ipcglobal in

Problem- LeetCode #994: Rotting Oranges

You are given an m x n grid where each cell can have one of three values:

0 representing an empty cell,
1 representing a fresh orange, or
2 representing a rotten orange.

Every minute, any fresh orange that is 4-directionally adjacent to a rotten orange becomes rotten.

Return the minimum number of minutes that must elapse until no cell has a fresh orange. If this is
impossible, return -1.

Example 1:

Minute O Minute 1 Minute 2 Minute 3 Minute 4

DO VIO

t

|

O | YO

o)l

ol |
(||

|
(||
ol

Ve | 9e

Input: grid = [[2,1,1],[1,1,0],[0,1,1]]
Output: 4

Example 2:

Input: grid = [[2,1,1],[0,1,11,[1,0,1]]

Output: -1
Explanation: The orange in the bottom left corner (row 2, column 0) is never rotten, because rotting
only happens 4-directionally.

Example 3:

Input:

grid = [[0,2]]

Output: 0
Explanation: Since there are already no fresh oranges at minute 0, the answer is just 0.

H.O- 205, LGF, Greater Kailash 1l, New Delhi — 110048, INDIA, e. info@tpcglobal.in , web: www.tpcglobalin

B.O: 5 R Tower, Shiva Enclave, GMS Road, Ballupur Chauk, Dehradun- 248 001, Uttarakhand, INDIA

ThE

e TPC Global

e tining for Profiessional (ompetonce

Code-

class Solution {

public:
int orangesRotting (vector<vector<int>>& grid) {
int rows = grid.size();
int cols = grid[0].size();

queue<pair<int, int>> q; // This queue will store positions of rotten

oranges
int fresh = 0; // Count of fresh oranges
int minutes = 0; // Time taken to rot all oranges

// Step 1: Count fresh oranges and add rotten ones to queue
for (int 1 = 0; 1 < rows; 1i++) {
for (int j = 0; j < cols; J++) {
if (grid[il[j] == 2) {
gq.push({i, J}); // Rotten orange found, add to queue
} else if (grid[i][j] == 1) {

fresh++; // Fresh orange found, count it

// These are the directions: - up, down, left, right

vector<pair<int, int>> directions = {{-1,0}, {1,0}, {0,-1}, {0,1}};

// Step 2: Use BFS to spread rot to nearby fresh oranges
while (!g.empty () && fresh > 0) {

int size = g.size(); // Number of rotten oranges at this minute

for (int 1 = 0; 1 < size; i++) {
pair<int, int> current = g.front(); // Using pair<int, int>
explicitly
q.pop () ;

int x current.first;

int y = current.second;

H.O- 205, LGF, Greater Kailash Il, New Delhi — 110048, INDIA, e. info@tpcglobal.in , web: www.tpcglobalin
B.O: 5 R Tower, Shiva Enclave, GMS Road, Ballupur Chauk, Dehradun- 248 001, Uttarakhand, INDIA

ThE

e TPC Global

warw Ipcglobal in 2. i
Jraining for Profestional (ompelont e ——
// Check all 4 directions
for (int j = 0; j < 4; J++) { // Loop over the directions using
index

int newX = x + directions[j].first;

int newY = y + directions[j].second;

// If the new cell is inside the grid and has a fresh orange

1if (newX >= 0 && newY >= 0 && newX < rows && newY < cols

&& grid[newX] [newY] == 1) {

grid[newX] [newY] = 2; // Make the orange rotten

g.push ({newX, newY}); // Add to queue to process later
fresh--; // One less fresh orange

minutes++; // One round of BFS done, so one minute passed

// If no fresh orange left, return time taken, otherwise return -1

return (fresh == 0) ? minutes : -1;

H.O- 205, LGF, Greater Kailash Il, New Delhi — 110048, INDIA, e. info@tpcglobal.in , web: www.tpcglobalin
B.O: 5 R Tower, Shiva Enclave, GMS Road, Ballupur Chauk, Dehradun- 248 001, Uttarakhand, INDIA

