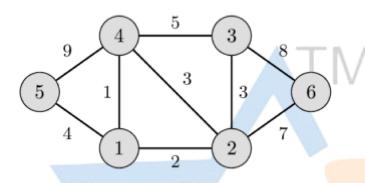


Prim's Algorithm

Introduction

- Prim's Algorithm is a greedy algorithm used to find the Minimum Spanning Tree (MST) of a weighted, connected, undirected graph.
- A Minimum Spanning Tree (MST) is a subset of the edges that connects all vertices of the graph with the minimum possible total edge weight and without any cycles.


Key Idea

- Start from any vertex.
- At each step, choose the minimum-weight edge that connects a vertex in the MST to a vertex outside the MST.
- Repeat until all vertices are included in the MST.

Steps of Prim's Algorithm

- 1. Initialize MST with a starting vertex.
- 2. Maintain a set of visited vertices.
- 3. From the visited vertices, pick the edge with the **smallest weight** that leads to an unvisited vertex.
- 4. Add that edge and vertex to the MST.
- 5. Repeat until all vertices are included.

Example-

Step 1: Start from vertex 1

Edges from $1 \rightarrow (1-4 = 1)$, (1-2 = 2), (1-5 = 4)Pick the **smallest = 1-4 (1)**

MST so far: {(1-4)}

Step 2: Now vertices {1,4} are inside

Edges \rightarrow (1–2 = 2), (1–5 = 4) Pick the **smallest = 1–2 (2)**

MST so far: {(1-4), (1-2)}

Step 3: Now vertices {1,2,4} are inside

Edges \rightarrow (2–3 = 3), (1–5 = 4), (2–6 = 7) Pick the **smallest = 2–3 (3)**

MST so far: {(1-4), (1-2), (2-3)}

Step 4: Now vertices {1,2,3,4} are inside

Edges \rightarrow (1–5 = 4), (2–6 = 7) Pick the **smallest = 1–5 (4)**

MST so far: {(1-4), (1-2), (2-3), (1-5)}

Step 5: Now vertices {1,2,3,4,5} are inside

Edges \rightarrow (2–6 = 7) \leftarrow Only one left = 2–6 (7)

MST so far: {(1-4), (1-2), (2-3), (1-5), (2-6)}

Final MST edges:

(1-4), (1-2), (2-3), (1-5), (2-6)

Total weight = 17

Time Complexity

- Using Adjacency Matrix: O(V²)
- Using Min-Heap / Priority Queue with Adjacency List: O(E log V)
 (where V = vertices, E = edges)

Applications of Prim's Algorithm

- Network Design:
 - o Computer networks, telecommunication networks, electrical grids.

obal.in

- Cluster Analysis in Machine Learning.
- Civil Engineering: Road and pipeline design with minimum cost.
- Approximation algorithms for NP-hard problems (like TSP).

