

TIME, SPEED AND DISTANCE- ADVANCE

<u>1111</u>	VIE, SPEED AI	ID DISTANCE AL	DVAIVEL
distance (in miles) the train 12 mph to the city every da	has travelled from the training and meets the training and she is in time.	the nearby station. Shev ain running in the same However one day when	djacent to the track indicates the vta rides her bicycle at a speed of direction at 12 th milestone when Shewta is running late by 25 min, (d) 96 mph
	kar decides to wate to strict traffic rule	es only 2 are allowed on	ne motorc <mark>ycle that can</mark> be driven a motorc <mark>ycle. All 3 can</mark> walk with km.
Q 2: If the speed of the mot of them can reach theatre fra (a) 8.35 hours			st possible time in which all three (d) 10.35 hours
Q 3: If the speed of the m travels if they travel such the (a) 446 km			tal distance that the motorcycle eously? (d) 420 km
flowed with a constant spec	ed. As he was drivi his jacket was gor	ng, his spare life jacket ne, and he turned to ge w fast was the river flow	driving his boat up a river which fell of the boat. Twenty minutes t it back as soon as possible. He ing? (d) 5 km/hr
completes one round and m	ogging from the ver neets Q at a point S, on and both of the order	, while Q is yet to compl	on ABCD in the same direction. Pete his first round. Upon meeting at A. The other vertices of the
(a) $\sqrt{2}:1$ (b) $\sqrt{2}$	$\sqrt{2} + 1 : 1$	(c) $1: \sqrt{2}-1$	(d) Either [b] or [c]
•	3 and C	(c) C and D	(d) Cannot be determined
at time t = 0, runs 1.5 time Raina, reaches the ball, the (at t = 0)? The first one to re (a) 1 m (b) Q 8: A man rows a boat fr	es faster than Kohli two fielders are 3 r ach the ball, out of 2 m	i. When the first one to m apart. How far ahead Kohli and Raina, reache (c) 17 m	Raina, which is 6 m behind Kohli o reach the ball out of Kohli and of Kohli was the ball to start with s the ball at time t = 5 seconds (d) either 2 m or 17 m
speed of the current.			tween A and B is 1 km, find the

- Pioneers in Campus Recruitment Training across north India since year 2006
- 10 years of successful track record in Institutional & Corporate Training
- Over 25000 students cleared Aptitude round and final Interviews (in IT/Non IT companies) after attending our 'Campus Recruitment Training Programmes'

web: <u>www.tpcglobal.in</u> e: <u>info@tpcglobal.in</u> www.facebook.com/tpcglobal

SOLUTION

Solution 1: (b)

Speed of Shweta is 12 mph.

Everyday Shweta reaches at 6th milestone 30 minutes before. But today she is late by 25 minutes and meets the train at 6th milestone. Hence the train has to cover a distance of 6 miles in 5 minutes. Speed of train would be 72 mph.

Solution 2: (c)

Home ◆ D ◆ Theatre

Let Sachin take Ramesh with him on the motorcycle and drop him at C and return to find Tendulkar (who already started walking when both of them left) at D and by the time Sachin and Tendulkar reach theatre Ramesh would travel from C to theatre implies all three reach theatre simultaneously.

Let the distance from Home to D be x and C to D be y and C to theatre be z.

Now since the motorcycle travels four times as fast as they walk, you can get the following ratios:

$$(x/x + 2y) = 10/40$$

x = 2y/3.

Similarly, z = 2y/3.

Or x = z.

This relation gives x = 60, y = 90 and z = 60.

Total time = Tendulkar walks from Home to D and travels in the motorcycle from D to theatre.

i.e. =
$$\frac{60}{10} + \frac{150}{40} = 6 + 3\frac{3}{4} = 9\frac{3}{4}$$
 hours

Solution 3: (c)

If speed of motorcycle = 70 km/hour i.e., the motorboat travels 7 times as fast as they walk (x/x + 2y) = 10/70

x = y/3.

Similarly, z = y/3.

Or x = z.

This relation gives x = 42, y = 126 and z = 42.

Hence motorcycle will travel x + 3y + z = 462

Solution 4: (a)

Let the speed of water be s km/hour. Relative speed while travelling upstream = (50 - s) km/hour.

As he was driving, his spare life jacket fell of the boat (at P say), 20 minutes

Distance travelled by man in 20 minutes = 1/3 hour. Upstream = (50 - s)/3 km (let this is PQ).

Distance travelled by jacket in 20 minutes downstream = s/3 km (let this is PR)

Hence initial distance of separation = d = PQ + PR = s/3 + (50 - s)/3 = 50/3 km.

Later the man noticed the jacket was gone and turned back to get it.

Time taken to get it = d/relative speed travelling downstream between man and jacket = $d/(50 + s - s) = d/50 = 50/(3 \times 50) = 1/3$ hours.

Distance travelled by him in this time = QT = (50 + s)/3

He found it 3 km away from where he lost it.

PT = 3 km = QT - PQ = [(50 + s)/3] - [(50 - s)/3]

50 + s - 50 + s = 9

S = 4.5 km/hour.

Solution for questions 5 and 6

Let the length of each side of the square is x.

- ❖ Pioneers in Campus Recruitment Training across north India since year 2006
 - 10 years of successful track record in Institutional & Corporate Training
- Over 25000 students cleared Aptitude round and final Interviews (in IT/Non IT companies) after attending our 'Campus Recruitment Training Programmes'

As P completes one round and meet Q somewhere at the track. Let that distance be y from the starting point.

$$\frac{speed_P}{speed_Q} = \frac{4x+y}{y}$$
. Now, P returns back to the starting point and meet Q there.

$$\frac{speed_P}{speed_Q} = \frac{y}{4x-y}$$
. Equating both the equations, we get $y = \sqrt{2}x$. Substitute this value in the equation

gives
$$\frac{speed_P}{speed_Q} = \frac{\sqrt{2}+1}{1} = \frac{1}{\sqrt{2}-1}$$

Solution 5: (d)

Solution 6: (d)

We do not know the direction of running. Hence cannot be determined.

Solution 7: (d)

Let d be the distance between Raina and the ball at t = 0 also suppose that K and R = 1.5 K are the respective speeds of Kohli and Raina.

Case 1: Raina catches the ball and Kohli is 3 m behind Raina. We get the following 2 equations:

$$(1.5 \text{ K} - 0.8) \times 5 = d$$

$$d-6-3=(K-0.8)5$$

Solving the above 2 equations, we get K = 3.6 m/sec and d = 6 (which is the distance between the ball and Kohli at t = 0) = 17

Case 2:

Kohli catches the ball and Raina is 3 m behind Kohli. We get the following 2 equations:

$$(1.5 \text{ K} - 0.8) \times 5 = d - 3$$

$$d - 6 = (K - 0.8) 5$$

Solving the above 2 equations, we get K = 1.2 m/sec and d = 6 (which is the distance between the ball and Kohli at t = 0) = 2

Solution 8: (b)

Going with current and against current for the same time means speed of the boat in still water is neutralized.

Speed of current only moves the boat.

Boat is moved 1 km by the current in (10 + 10) minutes = 20 minutes = $\frac{1}{3}$ hour.

Therefore, speed of current = $1 \times 3 = 3$ km/h.

Solution 9: (c)

In first case, B is late by 60 min's

In second case B, after getting a start of 8 km, he reaches 12 min's late.

Therefore, time taken by B travel 8 km = 60 - 12 = 48 min's

Therefore, B's speed = $\frac{8}{48} \times 60 = 10 \ km/h$

Therefore, time taken by B = $\frac{110}{10}$ = 11 hours

Therefore, time taken by A = 11 - 1 = 10 hours

Therefore, A's speed = $\frac{110}{10}$ = 11 km/h

Solution 10: (d)

In the question, only relative values are given. Hence, we can't determine the actual value.

- ❖ Pioneers in Campus Recruitment Training across north India since year 2006
 - ❖ 10 years of successful track record in Institutional & Corporate Training
- Over 25000 students cleared Aptitude round and final Interviews (in IT/Non IT companies) after attending our 'Campus Recruitment Training Programmes'

web: www.tpcglobal.in

e: info@tpcglobal.in